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Wave drift damping of floating bodies in slow 
yaw motion 
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Wave diffraction, wave forces and wave drift damping due to a floating body per- 
forming a slow rotation about the vertical axis (yaw) is considered. The rotation 
angle of the body may be arbitrary. The angular velocity is assumed small compared 
to the wave frequency, however The problem is formulated in the frame of reference 
following the slow rotation of the body, accounting for non-Newtonian forces. By 
applying the method of multiple timescales, the fluid flow is determined consistently to 
leading order in the slow angular velocity and to second order in the wave amplitude. 
Mathematical solution of the problem is obtained by means of integral equations 
that are applicable to geometries of arbitrary shape. The wave loads are found by 
applying conservation of linear and angular momentum. The wave drift damping is 
expressed by the far-field amplitudes of the wave field and the dipole moments of 
the time-averaged second-order potential. Numerical results are presented for a ship 
and a vertical cylinder describing a circular path in the horizontal plane. The results 
show that the wave drift damping due to a slow yaw motion of a floating body is one 
order of magnitude larger than the time-averaged forces and moment when there is 
no rotation. Wave drift damping due to slow rotation and slow translation are found 
to be of equal importance. 

1. Introduction 
The induced forces on and motions of floating bodies in ocean waves are topics of 

considerable interest both from a practical and fundamental point of view. Within 
deep-sea technology, for example, new floating production systems like moored ships 
and small floating oil platforms are under development for operations in very deep 
water. The actual water depths are as large as lOO(r1500 m, which applies to the oil 
resources at Verringsbassenget and Merrebassenget in the Norwegian Sea, but water 
depths down to 2000 m are also considered. Accurate computations of wave loads on 
and wave-induced motions of the floating parts of the production systems are crucial 
for the construction and dimensioning of the mooring system, and for the positioning 
and operation of the whole structure. There are several other examples relating to 
offshore activity: towing operations of large bodies, manoeuvering of ships, motions 
of a body drifting in waves. 

While the linear part of the wave forces oscillates with the frequencies of the 
incoming waves, nonlinear effects give rise to sum- and difference-frequency forces 
acting on the moored body, The difference-frequency forces may give rise to resonant 
slowly varying oscillations of the body in the horizontal plane, which may have 
quite large amplitudes, being determined by the difference-frequency loading, the 
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mass-spring characteristics of the body and the moorings, and by the damping forces. 
We shall in this contribution study wave drift damping, which has proved to be an 
important damping force of such resonant slowly varying motions, where damping 
due to linear wave radiation is negligible and viscous forces may be small. Wave 
drift damping is proportional to the square of the incoming wave amplitude and 
proportional to the slowly varying velocity of the body. 

If the body performs a slow horizontal translation with speed U in the incoming 
waves, the time-averaged force along the speed direction, F,, being proportional to the 
wave amplitude squared, is a function of the forward speed. If U is small compared 
to the phase velocity g / o  of the incoming waves, assuming deep water, where o 
denotes the wave frequency measured in an absolute frame of reference, and g the 
acceleration due to gravity, the force may be expanded as 

F X ( U )  = F x o  - B11 uo/g. (1.1) 
Here, Fxo denotes the force for U = 0, and -B11Uo/g the wave drift damping 
force. The expansion (1.1) was first suggested by Wichers & van Sluijs (1979), who 
studied model tests of the damping of low-frequency oscillations of moored ships, 
finding a pronounced effect of the wave drift damping. For a body translating 
slowly horizontally with speed U along the x-axis, speed V along the y-axis, and a 
slow rotation with angular velocity 52 about the vertical z-axis, with time-averaged 
horizontal force components F, and Fy along the x- and y-axes, respectively, and 
time-averaged moment about the vertical axis, M,, in a Cartesian frame of reference 
Oxyz, the generalization of (1.1) reads 

( S Z )  = ( 2: ) - ( 5;; 2 2:) ( u w / g  W g ) .  (1.2) 
Mzo B62 B66 Q/o 

Here, (Fx0 ,Fyo ,Mz~)  = (F,,F,,M,) for U = V = 52 = 0, and ( B i j )  denotes the 
wave drift damping matrix. In recent years several methods have been published 
for predicting the forces due to a body moving in translatory motion in waves, or 
a stationary body in waves and a current, see e.g. Grue & Palm (1985, 1986) for 
the two-dimensional case, and in three dimensions Huismans & Hermans (1985), 
Huismans (1986), Zhao et a1 (1988), Zhao & Faltinsen (1989), Nossen, Grue & Palm 
(1991), Emmerhoff & Sclavounos (1992), Grue & Biberg (1993). These works describe 
methods to evaluate, among others, the wave drift damping coefficients B11, 2312, B21, 
B22. 

The theory was extended by Grue & Palm (1993) to account for the time-averaged 
moment M, due to a translating body, allowing predictions of B61 and B62. They 
pointed out that time-averaged velocities in the fluid, being proportional to the wave 
amplitude squared, give rise to important contributions to M,, i.e. B61, B62. At the 
same time a method for obtaining the complete wave drift damping matrix, and 
thereby for the first time the damping coefficients 2316, B26, B66, was given by Newman 
(1993). He applied a perturbation approach where the low-frequency oscillations of 
the floating body, which were assumed small, were superposed on the diffraction field. 
The theoretical framework was given without numerical examples. 

In the present work a method is derived to evaluate the coefficients Bi6, i = 1,2,6, 
of the wave drift damping matrix, which is based on integral equations and with the 
motion referred to the relative coordinate system fixed to the body. In this frame 
of reference non-Newtonian forces are accounted for. A floating body performing a 
slow rotation about the vertical axis while being exposed to incoming monochromatic 
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waves is considered. The rotation angle of the body may be finite, and may be an 
unspecified function of time. The angular velocity is assumed to be small compared 
to the wave frequency of the incoming waves, i.e. s2 /0  4 1, however. This justifies 
application of the method of multiple timescales. The fluid flow and the forces do 
then depend on the instantaneous wave angle. 

The fluid is assumed to be homogenous and incompressible, and viscous effects 
are disregarded, such that potential theory may be applied. First an exact relation 
for the fluid pressure in the relative frame of reference is derived. The boundary 
value problem for the velocity potential is then developed. The method of multiple 
timescales, and perturbation expansion of the potential in terms of the wave amplitude 
and the slow angular velocity are then applied. Next integral equations are derived 
for the set of potentials, involving unknown quantities on the wetted body surface 
only. The integral equations are suitable for solution by means of a low-order panel 
method, which is applied here, giving efficient and robust numerical algoritms. The 
method is general and is applicable to bodies of arbitrary shape. To simplify the 
analysis, only linear diffraction effects are accounted for in this work. Thus, in the 
relative frame of reference the body is restrained. The water depth is assumed infinite, 
and the body is assumed to be wall-sided at the water line. 

The time-averaged horizontal force and vertical moment may be obtained in 
different ways. The most usual procedures are either by integrating the pressure over 
the instantaneous wetted part of the body surface, or by applying conservation of 
linear and angular momentum. The latter method is applied here, giving as final result 
that F,, Fy ,  M,, B16, B26, and B66 are expressed in terms of the far-field amplitudes 
of the wave potentials and the dipole moments of the time-averaged second-order 
potential. The formulae are given in a form where all integrals are brought to a 
convergent form that is suitable for numerical evaluation. 

A code for the complete method is developed, and numerical results are presented 
for two practical geometries, i.e. a vertical circular cylinder moving with its axis 
describing a circular path about the origin, and a ship. The calculated wave drift 
damping B66 is compared to viscous damping. In a realistic case of a ship of length 
230 m and beam 41 m we find that the wave drift damping predominates when the 
wave amplitude is larger than 1.7 m. This result holds for all wave headings and for 
wave period less than 14 s (see 59.2). w e  also find that B16, B26, B66 may be one order 
of magnitude larger than Fx0, FYo, Mz0. For the ship we obtain, for example, that 
B 6 6 / k f z 0  N 200 for a quartering sea with wavelength about half of the ship length. 
(Q/W)B66 may then be about 25% of MZo in a described practical case. (The details 
are explained in 59.3.) 

We have not considered here the importance of wave drift damping compared 
to viscous damping (in the yaw mode) for an oil platform. However, it seems 
obvious that the relative effect of wave drift damping compared to viscous damping 
is approximately the same for slow rotation and slow translation for this geometry. 
Wave drift damping has proved to be significant for the latter mode of motion. 

Our formulae for Bi6 are in another form than those obtained by Newman. It is, 
however, possible by appropriate transformations to compare them. We find that our 
and his final formula for B66 are formally the same, except that the rotation angle of 
the body is finite in our analysis. For Bi6, i = 1,2, however, there are discrepancies 
between our formula (7.11) and Newman’s final result (5.6). The discrepancies are 
identified and discussed, see $7. 

During the course of this work, the yaw problem was also being considered by 
Emmerhoff & Sclavounos (1993) and Emmerhoff (1994). They formulate the problem 
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essentially in the absolute frame of reference, and present a solution for arrays of 
vertical cylinders. Both our and their methods, which were initiated independently, 
utilize the fact that the sum of the relative incident wave angle and the angle of rotation 
are independent of time. Preliminary results of our method were given by Grue & 
Palm (1994). In Sclavounos (1994) the equation governing the slow drift motion of a 
floating body, including the role of the wave drift damping matrix, is discussed. 

The paper is organized as follows. In $2 the equation of motion for the fluid in 
the relative frame of reference is formulated, an exact relation for the pressure is 
derived, and the fast and the slow timescales are introduced. In 53 the boundary value 
problem is discussed and the perturbation potentials introduced. In $4 the resulting 
set of boundary value problems is solved by means of integral equations. In $5 the 
equations for the slowly rotating body are compared to those for the slow surge and 
sway problems. In $96 and 7 expressions for the damping moment and the damping 
force, respectively, are derived. Section 8 is devoted to the balance of energy, and $9 
describes numerical results. Finally, $10 contains concluding remarks. 

2. The equation of motion and the pressure 
We consider a floating body performing a slow time-dependent rotation about the 

vertical axis while being exposed to incoming waves. Two frames of references are 
introduced: one absolute frame of reference, Oxoyozo, fixed in space, and one relative 
frame of reference, Oxyz, following the slow rotation of the body. The vertical axis 
is defined by the z = zO-axis, pointing upwards, with z = zo = 0 coinciding with 
the mean free surface. Unit vectors i, j ,  k are introduced along the x-, y-,  z-axes, 
respectively. Let a(t) denote the rotation angle of the body relative to the xO-axis, 
and 52 = Qk = dk the angular velocity, where a dot denotes derivative with respect 
to time. Oxoyozo and Oxyz are then related by 

x = x'cosa + yo sina, 
y = y  0 COSR-x'sina, 

0 z = z .  

The fluid motion is considered in the relative frame of reference. Neglecting viscous 
effects the equation of motion for the fluid reads 

(2.4) 
au 
at 

p- + pU * V U  = -Vp - PgVz + H 

where u and p denote the velocity and pressure of the fluid, respectively, p denotes 
the density, assumed constant, g denotes the acceleration due to gravity, and H is 
given by 

Here, the first term denotes the the Coriolis force, the second term the centrifugal 
force, and the third term the fictive force due to the angular acceleration. 

A velocity field given by -a x x is introduced when observing the fluid velocity 
from the relative frame of reference. Thus, u may be decomposed as u = u' - l2 x x. 
Assuming that u' is irrotational, this velocity may be obtained by the gradient of a 
velocity potential @', i.e. u' = V@'. The equation of motion may then be written in 
the form 

H = -2p52 x u - pi2 x 52 x x - pd2 x X. (2.5) 
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where polar coordinates are introduced by x = Rcos8, y = RsinO. By integration 
we obtain the following expression for the fluid pressure: 

where C(t )  is an arbitrary function of time. Both (2.6) and (2.7) are exact. 

2.1. Fast and slow timescales 
The wavenumber of the incoming waves, K ,  non-dimensionalized by the characteristic 
length of the floating body, 1, is assumed to be of order unity. For deep-water waves 
this means that w21/g = 0(1), where w denotes the wave frequency in the absolute 
frame of reference. The rotation angle of the body may be of arbitrary magnitude, 
i.e. cl(t) = O(1). The angular velocity Q is, however, assumed to be much smaller than 
the wave frequency w, i.e. 

Since the rotation angle is finite, this assumption implies that 
sz/w 4 1. (2.8) 

(2.9) 0 2 / 0 2  = 0 ( Q 2 / w 2 )  4 a/w. 

In the following analysis we shall apply a perturbation expansion in Q/co, retaining 
terms up to order Q/o. This means that the perturbed problem has two timescales: 
a fast timescale with characteristic time l /w,  and a slow timescale with characteristic 
time 1/Q. In obtaining for example the wave drift damping force and moment a time 
average over the fast timescale is applied. 

3. The boundary value problems 

fluid domain. It is convenient to decompose @’ as 
Assuming that the fluid is incompressible, @’ satisfies the Laplace equation in the 

@ I  = q5s + @ + (3.1) 
where $s = Qx6 denotes the potential generated by the body when there are no waves, 
@ the linear wave potential proportional to the amplitude A of the incoming waves, 
and y(2) a time-averaged second-order potential proportional to the wave amplitude 
squared. 

3.1. Steady potentials x1, x 2 ,  x 6  

The steady potential x6 appears in (3.1). Later, potentials x1 and x 2  will also be 
required. The potentials xi, i = 1,2,6, satisfy the following boundary value problems: 

V2xi  = 0 in the fluid domain, 
axi - = 0  at z = O ,  
az 

= n, at SB,  axi - 
dn 

I IVxjI - + O  R + w ,  z +-a, 

where n = (nl,n2,n3) denotes the unit normal at S B ,  pointing out of the fluid, and 
n6 = n * ( k  x x) = 112x - nly .  The potentials xi, i = 1,2,6, are obtained by means of 
source distributions. 
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3.2. The boundary conditions, @ 
To obtain the free-surface condition for @, the individual time-derivative is applied 
to (2.7) at the free-surface elevation z = [. After linearizing with respect to the wave 
amplitude we find 

(3.3) 
a 2 @  a 2 @  a@ a2&a@ a@ 
a t2 aeat at a z 2  at a z  ~ -2Q- +2Vh4s-V,,- - -- +g- = 0 at z = 0 

where Vh denotes the horizontal gradient. Let us then introduce @ = Re[(Aig/w)4ei"']. 
Noting that @ and 4 are functions of CI, Q, h, ..., we find for the partial time-derivative 
of @ 

at (3.4) 

We now introduce the perturbation parameter 6 = Q/w. By expanding (3.3) in terms 
of e, retaining terms up to O(c),  the free-surface condition for 4 reads 

where K = w2/g .  In this paper we consider the diffraction problem, which means that 
the body has no motions in the relative frame of reference. The boundary condition 
for 4 at the body is then given by 

In addition, there is a radiation condition for 4 - 41 as R -P co, where 41 denotes the 
incoming wave potential defined below by (3.1 1), requiring that 4 - 41 is composed of 
outgoing waves only. This is equivalent to requiring that there are no energy sources 
as R + co, except the incoming waves. 

3.3. Perturbation procedure 
It is convenient to expand the potential 4 in e by 

4 = 4' + €41 + ...; (3.7) 
4' then satisfies 

84' -K4'+-=O a z  at z = O ,  

4' is composed of the incoming wave potential, 41, and the scattering potential, 
4 7 ,  i.e. 4' = 41 + 47. In addition to the conditions at the free surface and the 
body boundary, 4 7  satisfies IV47I --+ 0 for z -+ -co and the radiation condition for 
R -+ co, i.e. 

4 7 - - R  - - 1 / 2 f p  (e)eKz-xR (1 + o((KR)- ' ) )  (3.10) 
where H'(0) denotes the far-field amplitude of the potential, which is determined by 
(4.19). 

The incoming wave potential is given by, assuming water of infinite depth, 

(3.11) 

where p (which is a function of time) denotes the angle between the x-axis and the 

Kz-iKR cos(B-8) 4 I  = e 
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wave direction (in the relative frame of reference). p is related to the angle between 
the xO-direction and the wave direction, Po, (in the absolute frame of reference) by 
p = Po - cx. It is obvious that 4° is a function of j? = Po - CI. This means that 

= - d 4 ° / d p .  The free-surface boundary condition for then becomes 

In the diffraction problem the body boundary condition is 

(3.13) 

In addition, 4' satisfies the condition of outgoing waves as R + co, and IV&I -+ 0 
for z -+ -a. 

It is convenient to decompose the boundary value problem for 4' by introducing 

4' = ($11 + $12 + 413 (3.14) 

where 411, 412, 413 satisfy the following set of boundary value problems: 

(3.15) 

(3.16) 

(3.17) 

(3.19) 

413 satisfies, in addition to (3.18)-(3.19), IV413/ + 0 for z + -00, and the radiation 
condition for R -+ 00, i.e. 

413 = R-1/2H13 (Q)eKz-KR (1 + O((KR)-')) (3.20) 

where HI3(@ denotes the far-field amplitude of the potential, which is determined by 
(4.21). 

The potentials 4" and $12 may be given in the form (Nossen et al. 1991, equation 
(34); Emmerhoff & Sclavounos 1992, equation (38)) 

(3.21) 

(3.22) 

The solutions (3.21) and (3.22) contain secular terms. This means that the potentials 
and 412 become infinitely large for R -+ co. This does not, however, lead to any 

mathematical problem as long as the value of R is large, but finite. Nevertheless, 
we want to utilize the far-field form of the potentials involved to deduce the final 
form of the integral equation and convenient formulae for the damping coefficients. 
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Therefore, in our derivations all relevant integrals are brought to convergent forms 
before R -+ 00. 

We further note that Cpl1 + Cp12 = 2iKa/aK(aCp,/ap + aCp7/a6) represent outgoing 
waves for large R. 

3.4. The boundary conditions, y(2) 
The second-order potential y(2) appears in the formulae for the second-order fluid 
pressure and for the mean force and moment, always multiplied by the slow angular 
velocity SZ. To leading order in S2 it is then sufficient to consider the boundary value 
problem for y(2) when SZ = 0. The free surface condition for y(2) then reads 

where a bar denotes time-average and an asterisk complex conjungate. In the 
diffraction problem, &,d2)/an = 0 at the body surface. In addition, +. 0 for 
R -+ co, or z --+ -m. 

The solution for y(2) may be obtained by an integral equation. The analysis below 
shows, however, that only the boundary conditions for y(2) are required to find the 
mean force and moment acting on the floating body. Thus, the complete solution 
for y(2) is not needed. In the general case y(2)  also satisfies a non-trivial boundary 
condition at the body boundary. A complete discussion of the significance of Y ( ~ ) ,  
and how to obtain the potential, is given by Grue & Palm (1993). 

4. Integral equations 
As will be shown in $36 and 7, the far-field amplitudes H o  (see (3.10) and (4.19)), 

including derivatives of H o  with respect to p, 0, and K in combinations up to second 
order, and H13 (see (3.20) and (4.21)) are required to find the damping coefficients 
Bi6. Furthermore, xi ( i  = 1,2) and Im(Cp°Cp:f) must be determined in the formula for 
B16, B26. While H o  is determined by Cpo, H13 is most conveniently determined by the 
potentials x 6  (see §3.1), Cpo, and Cp' - 6" = #12 + Cp13. We shall in what follows deduce 
integral equations for the two latter potentials. 

4.1. The potential Cpo 
To solve the boundary value problem for Cpo we first introduce a Green function, 
Go(a, b, c, x, y ,  z), being a sink at x = a = (a, b, c), satisfying the free-surface boundary 
condition (3.8). This Green function may be written by, see e.g. Wehausen & Laitone 
(1960, equation 13.17), 

where r = Ix - a/ ,  R' = [(x - a)2 + ( y  - b)2]1/2, Jo denotes the Bessel function of first 
kind and order zero, and the path of integration is above the pole at k = K .  For 
R -+ 00, Go takes the form 

(1 + W K R - ' ) ) )  (4.2) 

(4.3) 

GO = R-1/2h0((9)eKZ-'KR 

where 
ho = ( 8 7 ~ K ) ' / ~  exp[K(c + iacos 0 + ib sin 0) - in/4]. 
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By applying Green's theorem to 4' and Go it may be shown that 4° satisfies, see 
e.g. Nossen et al. (1991, equation 40), 

where Y denotes the fluid volume enclosed by the body surface, S B ,  the free surface, 
SF,  and the vertical circular cylinder, S(R), with radius R. The integration is over the 
(a, b, c)-variables. The first case is an integral equation for 4'. 

Proper forms of the derivatives of the potential 4' for numerical use are obtained 
by means of integral equations. For example, d 4 ' / d p  may be determined by dif- 
ferentiating the integral equation (4.4) with respect to p. An integral equation for 
d24' /dKdp is obtained by differentiating (4.4) for 4' with respect to p and K .  The 
result is 

where 4; = a4O/ap, $ F K  = a240/dKdp,  41,BK = d241/dKdp. This equation deter- 
mines 4jK. 

A formula for &K = d24'/dKd8 may next be obtained by differentiating (4.4) with 
respect to 8 and K ,  giving 

(Note that ? / a n  = n(u) VU,  while a / a O  = d / d y  - y d / d ~ . )  

4.2. The potential 4' - 411 
To find an integral equation for 4' - 411 we first introduce an auxillary function, 
G'(a, b, c, x, y ,  z ) ,  regular for c < 0, z < 0, satisfying the following free-surface bound- 
ary condition : 

ac' dGO 
ac ae - -KG'+-  =2iK- at c = O  (4.7) 

where e" is defined by a = I? cos @, b = 
may be expressed in terms of Go by 

sin e", I?' = a' + b'. It may be shown that G' 

We first apply Green's theorem to y = 4' - 4'' = # I 2  + 413 and Go, giving 

By then applying the free-surface boundary conditions for 4", 413 and Go, and the 
body boundary condition for y ,  (4.9) reduces to 

The integrals over SF and S(R) are not in a final form, and may be further developed. 
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To do this we apply Green's theorem to 4' and G'. By introducing the boundary 
conditions for 4' and G1 at the free surface we obtain 

Subtracting (4.11) from (4.10) gives 

-271y(x), x E s, 
-4Zny(X), x E Y ,  +I = { 

where 

It is shown in Appendix A that 

(4.12) 

(4.13) 

(4.14) 

The free-surface integral in (4.12) may be further developed by noting that 

= v h  * [G04O(vhx6 - k X X)] - 4'(VhGo ' v h X 6  + iG'VtX6). (4.15) 

By application of Gauss' theorem, assuming that the body is wall-sided at the water 
line, we then obtain 

where CB and C(R)  denote the contours at z = 0 of SB and S(R),  respectively. The 
integral along CB vanishes due to the boundary condition (3.2) for X 6  at S,. The 
integrand at C(R)  disappears as R -+ co. The integral over SF is now in a form which 
converges very rapidly. Furthermore, 4l3dG0/dn - Goa413/dn at S(R)  vanishes as 
R -+ co since 413 and Go satisfy the same radiation condition. By then combining 
(4.12), (4.14), (4.16), we arrive at the final result for 4' - 411 : 

In the first case (4.17) is an integral equation for 
The damping coefficients Bi6 may now be obtained from the potential 4', its 

derivatives, and 4' - 4". If, in addition, for example, the linear exciting force on the 

- $ll. 
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body is to be determined, the complete potential 4' is required. This potential may 
be obtained by adding (4.5) multiplied by 2 X  and (4.17) with the result 

(4.18) -27141(x), x E s g  
-4714'(x), x E Y". 

-2iK LF #'(VhGo * VhX6 4- iGOViX6)dS = 

In the first case (4.18) is an integral equation for 4' 

4.3. The far-jield amplitudes H o  and HI3 
Consider now far-field amplitudes H o  and HI3. By introducing the far-field form of 
Go into (4.4), we obtain for H o  

(4.19) 

where ho is given by (4.3). Derivatives of H o  with respect to p, 0, K ,  or com- 
binations of these variables, are easily obtained. H; is for example found from 
H; = -1/(4n)Jsfl @h:dS. Consider now 413, which is obtained by subtracting 412, 

obtained by (4.6), from 4' - 4". This gives 

471413(x) = LB(411 - 4')--dS dGO + 2 X  
an 

By then introducing the far-field form of Go we obtain 

H 13 =-- 1 (4l- 411)-dS aho + 
471 L an 

with ho given by (4.3). 

(4.21) 

4.4. Remarks on the numerical procedure 
The set of potentials and source distributions is solved by means of their respective 
integral equations, applying a low-order panel method as the numerical method. The 
body surface and the free surface are discretized by quadrilaterals, and the potential 
or source strength is taken as constant at each panel. The Green function Go and its 
derivatives involved in the integral equations have singularities V (  l/r), V (  l/r'), l /r ,  
l/r', where r = Ix - a1 and r' = [(x - a)2 + (y - b)' + ( z  + c ) ~ ] ~ ' ~ .  These singularities 
are integrated separately over each panel by analytical methods, see Newman (1985). 
Otherwise a midpoint rule is applied for numerical integration. 

The quantity viX6 at z = 0 appears in the integral equation for 4' - 4". It follows 
from the Laplace equation that we may instead evaluate -d2~6/az2 ,  which is here 
obtained by numerical differentiation of -dXs/az, where we utilize that aXs/az = 0 
at z = 0, giving quite robust predictions of the quantity. 
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The free-surface integrals 

(4.22) 

in the formula (7.12) for B16, B26 are best obtained when 4 7  is represented by a 
source distribution 0 7  over the body surface, i.e. 47 = Js,c7GodS. We then find 
47,z2 = Jss a7G;,dS. When integrating G,, over quadrilaterals, the singular terms are 
treated separately by analytic formulae. The integrals of (a/dz)[(a/az)( l / r  + l/r')lz=o 
are obtained by using numerical difference when the source point is close to the 
quadrilateral and by four-points Gauss integration otherwise. This method is found 
to work well to predict (4.22). 

We further note that (4.22) denote the horizontal dipole moments of the potential 
y(2) for R -+ co, see Grue & Palm (1993, equations 77-79). These integrals have 
relatively quick convergence, since Irn(4'+;:) quite rapidly tends to zero with increas- 
ing distance from the body. The integrals (4.22) may be transformed to integrals 
containing first derivatives of +', where the latter are more robust quantities to 
evaluate than second derivatives close to the body surface when using the low-order 
panel method. Such a transformation leads, however, to two integrals over S, and 
along C(R),  respectively, which are unbounded as the truncation radius increases, and 
accurate evaluation of their sum may not be trivial. 

5. Comparison with the translatory case 
At this point it is worthwhile to point out the close connection between the problems 

with slow rotation and slow translation. The equations for the slow surge and sway 
problems may be deduced from the more general yaw problem. This also gives a 
possibility for checking the equations derived above. We shall therefore derive the 
equation for surge. A similar procedure may also be used for the sway problem. 

To obtain the equation for surge we situate the body, with finite dimensions, at 
y -+ --a (and x = 0). The rotation of the body with respect to the origin then 
corresponds to a translation along the x-direction, such that -0y  + U ,  where U is 
a small velocity along the positive x-direction. Then 

The fluid velocity is then given by u = -Ui + V@', where 

@' = Re[(Aig/m)4ei"'] + Uxl + ~ ( ~ 1 .  (5.2) 

By introducing z ( U )  = wU/g, the potential 4 is expanded as 

4 = 4' + z( U ) p  + ... . (5.3) 

The potential 4' is determined by (4.4), and x1 and tp(2) are defined by the boundary 
value problems formulated in $93.1 and 3.4, respectively. To obtain the potential 4" 
we first relate 4'' to 4' by 

The boundary condition for 4'' at the free surface may then be obtained by intro- 
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ducing (5.1) and (5.4) in (3.12), giving 

-K+'"+- ?@U = -2K C O S ~ ~ ~ + ~ ~ - - - - ~ ~ V ~ ~ ~ ~ V ~ ~ ~ - ~ ~ ~ V ~ ~ ~  (?4O at z = 0. (5.5) 
(32 8 X  

In addition, 6ILJ satisfies a41G'/c?n = 0 at the body, V4" -+ 0 for z + -GO, and a 
radiation condition for R + z. The boundary value problem for 4" may be solved 
by means of an integral equation, which is obtained by introducing (5.1), (5.4) and 
(5 .5)  into (4.18), giving 

where the first case is an integral equation for 4IL'. Wave radiation and wave 
diffraction due to a body with a small forward speed were studied by Nossen 
et al. (1991), who applied the decomposition 4 = q5°(v)+z(U)$'(v) of the potential 4, 
where v = K -2K cos p z ( U ) .  They arrived at the following integral equation for @ ( v ) :  

Now, 

4 = ~ O ( V )  + z (U)$ ' (V)  = @O(K) + z(U)[$l(K) - 2K COSB$;(K)] + O ( Z ( U ) ~ ) .  (5 .8)  
The potential -2K cosP4:(K) may be obtained by the following integral equation: 

-2nqP(x),  x E S B  
-4.4'yr), x E v. 2K C O S / ~ ~ - -  d2Go dS = { 

andK 
(5.9) 

By adding (5.7), with v replaced by K ,  and (5.9) we obtain the integral equation (5.6) 
for 4'' = $ ' ( K )  - 2K cos /+P(K),  as expected. 

6. The damping moment 
It is of principal interest to derive expressions for the wave drift damping force 

and moment. These quantities may be obtained in different ways. The most usual 
procedures are either by pressure integration over the wetted body surface, or by 
applying conservation of linear and angular momentum. Both methods have their 
advantages. Here we shall apply conservation of linear and angular momentum, 
resulting in compact formulae which are easy to evaluate numerically by a low-order 
boundary element method. 

First we consider the time-averaged moment about the vertical axis, M,. Conser- 
vation of angular momentum gives the following relation: 

Mz = k .Is p ( x  x n)dS 
R 

1 = k . [ - p z L x x u ! d V -  d x x u ' u - n d S  . (6.1) 



336 J.  Grue and E. Palm 

As control surface a vertical circular cylinder S(R) with axis passing through the 
origin is applied, where we have that k - (x x n)  = 0 and u * n = u’ * n. Introducing 
v’ = V@‘ we obtain 

M,  = PSZ- k . (X x V@’)dV - p @;@Ads (6.2) ii”p s, 6,,, - 
where @: = a@’/aO, @; = aaj’/an. In obtaining M,, terms proportional to Q2, A3 are 
disregarded. The integral in (6.2) over the fluid volume may be rewritten by applying 
Gauss’ theorem, i.e. 

k * (x x n)@’dS = n61p‘~)dS - [e@’dS. (6.3) 

Here we have applied k - (x x n) = 116 at S B ,  k (x x n)  = -re at S F ,  k - (x x n)  = 0 at 
S(R), and that 3 = w ( ~ ) .  By applying Green’s theorem to x 6  and y(2) and exploiting 
the boundary conditions for x 6  and ~ ( ~ 1 ,  we may show that 

k - L x x V m ’ d V =  s s B + s F  d 1 - 

where we have applied (3.23) and yL2) = 0 at SB.  We then expand the yaw moment 
in E ,  i.e. M,  = M,o - ~B66, where a minus sign is adopted since -eB66 appears as a 
damping moment. Introducing 4 = 4’ + €4’ we obtain the following expression for 
Mzo : 

This is a well-known result which agrees with Newman (1967). For B66 we find 

(6.6) 
Since the individual integrals in (6.6) do not converge for R -+ co (but their sum 
converges), it is appropriate to rewrite the integral over SF in (6.6). By applying 
Gauss’ theorem twice, and exploiting the boundary conditions for q5’, @, and x 6  at 
SF and Ss, we may show that 

We then apply Green’s theorem to the potentials 4; and 4’ and exploit the body 
boundary conditions for these potentials, i.e. 4;; = 4; = 0 at SB. The integral over 
S F  on the right-hand side of (6.7) is then converted to an integral over S(R) with the 
same integrand, but with the minus sign in front of the integral replaced by a plus 
sign. Upon introducing the result into equation (6.6) for B66, we find 

It is noted that the expression (6.8) for B66 agrees with Newman (1993, equation 5.10). 
Newman derived this expression by integrating the pressure over the wetted body 
surface, converting the resulting formulae to integrals over the control surface in the 
far field. In his approach, perturbation expansions of the potentials about a fixed 
position of the body is applied, assuming that the rotation angle and the angular 
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velocity are both small. In our analysis B 6 6  is obtained by applying conservation of 
angular momentum, allowing the rotation angle of the body to be finite, but assuming 
that the angular velocity is small. Thus, (6.8) being valid for a rotation angle of the 
body that is not small, is a generalization of Newman (1993). 

We then introduce #' = 2iK(#j, + @,) + $ I 3  in (6.8) and note that the divergent 
parts of $' cancel in the integral over S(R) for R + GC. B 6 6  may therefore be expressed 
in terms of the far-field amplitudes of 4, and 413, giving as the final result 

2n 
8 6 6  1 -- - -1m 1 [Hf(B) + H!*(B)]H'(B)dB 

pgA2 2K 

where the amplitude function H' is introduced by 

H'  = 2iK(HjK + H,o,) + H ' 3 ;  

H o  and H13 are given by (4.19) and (4.21), respectively. 

(6.10) 

7. The damping force 

for the mean horizontal force, F = Flil + F2i2: 
By applying conservation of linear momentum we obtain the following expression 

Using the same control surface as in the previous section, we may use in the last term 
that u * n = u' - n. In the derivations below, terms proportional to Q2, A3 are neglected. 
Consider first the pressure term in (7.1). By inserting (2.7) for the pressure we obtain 

where we have exploited the fact that the surface elevation far away from the body 
is given by [ = -(l/g)(Gt - QG8). By then introducing @ = Re[(Aig/w)+e'"'], and 
noting that dG/& = Re[(Aig/o)(iqb - Q$p)eiUt], we obtain 

+g I,,, IV4I2nidS - Q (y;) + yf')nidS. (7.3) b, 
Consider then Jv u'dV. By using Gauss' theorem this integral may be rewritten as 

integrals over S,, SF and S(R). For the horizontal components we find 

The integral over SB in (7.4) may be rewritten by applying Green's theorem to xi, 
i = 1,2, introduced in $3.1, and giving 

where we have exploited the boundary conditions for y(2)  and xi. Next we apply 
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Gauss' theorem to rewrite the integral over SF in (7.4), i.e. 

In the diffraction problem @/an = 0 at C g ,  provided that the body is wall-sided. By 
inserting (7.3)-(7.6) into (7.1) we find for the force 

(7.7) 

where the sum is over i = 1,2. By applying a variation of Stokes' theorem we may 
show that, see (B 5 )  in Appendix B, 

By combining (7.7) and (7.8) we find 

We then introduce 4 = 4O+e4', and expand the force in E ,  i.e. F = F O - E ( & 6 i + B 2 6 j ) ,  
where a minus sign is adopted since --e(Bl,ji + B26j )  formally appears as a damping 
force, giving 

(7.10) 

The formula (7.11) is in a different form than that obtained by Newman (1993), 
and in addition to that we here allow the rotation angle to be finite. It is, however, 
possible by appropriate transformations to compare his and our results. We find that 
there are discrepancies between (7.11) and his final result (5.6). Thus, to Newman's 

equation (5.6) we must add a term ( a / a p )  and change the sign on his 

term ( 2*ry2 ) (in Newman's notation), to obtain our formulae. We note that 

271,~i = - -0 / (2g)ssF(xi  - xi)Im(40&z)dS, i = 1,2. However, our formula (7.11) may 
after some algebra be brought into a form which is equivalent to Newman's equation 
( 5 3 ,  which preceeds Newman's equation (5.6). To obtain this agreement we must 

-271p2 ( -271p1 ) 
-2W1 
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disregard his comments following equation (5 .5) ,  where it is claimed that the second 
integral over SF vanishes for i = 1,2. 

Further development of the integrals in (7.1 1) requires some algebra. This is outlined 
in Appendix C, where we find that B16 and B26 may be expressed in terms of the far- 
field amplitudes of the potentials 47, 413, and the dipole moments of the time-averaged 
second-order potential (with integrals over the free surface), with the final result 

8. Conservation of energy 
In the general case the energy equation reads 

where W = Is pv - ndS denotes the mean work performed by the pressure force on 
the body. In t i e  present example the body is restrained, and no work is performed, 
thus W = 0. Equation (8.1) may then be utilized as a check on the model and the 
computational procedure. 

As in the previous sections, u - n = u' - n at S(R). Furthermore we have 

It may be shown that 

where we have neglected terms proportional to SZ2 .  Furthermore we have 

-l,,, ( f + ; v 2 + g z  

(8.3) 
Azg2 

@:@LdS = -Re ( i o 4  - SZ+p)$idS. 
= L ( R )  ~ 2Cf12 6 , R )  

By introducing 4 = 4'+e4' and expanding the right-hand side of (8.1) in W'+eW', 
we obtain 

(8.4) 
WO 

~ = -Im 
#%A2% 

W'  a 
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Y 

FIGURE 1. Sketch of the location of a vertical circular cylinder with radius a and draught 3a. 
The axis is located at x = 0, y = -1. 

where we have introduced the group velocity of the waves, cg = ac;o/dK = g/2m. 
By then applying 4' = 411 + +12 + 413, we may after some algebra obtain that 

a 
aK k ( R )  

-- W' - -2K-Re &&'dS - Iml(R)($"& + 4°4:3')dS. (8.6) 

Substituting for 4° and $13, and letting R 3 co, we obtain 

where the method of stationary phase is applied to obtain the terms containing H:(p) 
and H13(p). 

9. Numerical results 
Results for Bi6, i = 1,2,6, are considered for two different geometries. In the first 

example the body is a vertical circular cylinder with radius a, draught 3a, and located 
with its axis at x = 0, y = -1, where 1 is arbitrary, see figure 1. In the absolute 
frame of reference the cylinder axis describes a circular path about the origin with 
radius 1. Since the body is a vertical circular cylinder, the moment with respect to 
the z-axis equals the force component along the x-axis multiplied by the arm 1, i.e. 
M,O = 1Po * i, B66 = lB16. In figure 2 are shown results for the damping coefficients 
B16 normalized by po2aA21 and B66 normalized by po2aA212 for three different wave 
angles. The numerical results confirm that B16/l and B66/12 are independent of the 
value of 1, and that B66 = lB16, which are both expected results. We remark that 
the variation of the damping coefficients B16 and B66 with respect to the wave angle, 
keeping the wavenumber fixed, satisfies the following relations for this example : 

In figure 3 is shown B26 for wave angle p = 37c/4. B26 is always negative or zero. 
The numerical results confirm, as expected, that B26/l is independent of the value 
of 1. For this geometry, it is noted that B16/l, B26/1, and B66/12 may be obtained 
from the wave drift damping coefficients due to a vertical cylinder translating along 
the positive x-direction. Indeed, the results shown in figures 2 and 3 are in exellent 
agreement with the corresponding wave drift damping coefficients using the method 
of Nossen et al. (1991) for the translatory case. 

&6(n/2) < B16(P) < B16(n) and B66(n/2) < B66(p) < B66(7C) for all p. 
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FIGURE 2. Numerical results for BI6/pw2aA21 and B66/pw2aA212 us. K a  for the vertical cylinder 
described in figure 1, and three different wave headings. Wave amplitude A, wavenumber K .  
B16/pgA21: solid line, p = n ;  dashed line, = 37114; dotted line, b = n/2.  B66/pw2aA212: squares, 
p = n ;  triangles, p = 37114; diamonds, p = n/2. Black circles: results for a cylinder in translatory 
motion, obtained by the method of Nossen et al. (1991). Discretization: SB 784 panels. SF 784 
panels. SF is discretized out to the circle with centre in the cylinder axis and radius 7a. 

I r  
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FIGURE 3. Numerical results for B26/pw2aA21 us. K a  for the vertical cylinder described in figure 1. 
Black circles: Results for a translatory cylinder obtained using the method of Nossen et al. (1991). 
p = 37~14. B26 = 0 for f l  = n /2  and p = n. Discretization: sB 784 panels, sF 784 panels. SF is 
discretized out to the circle with centre in the cylinder axis and radius 7a. 

We have also invoked the energy equation for the vertical cylinder, see @A), (8.4), 
(8.7), which in our case predict that W = 0, since the body performs no work on 
the fluid. In all computations we find that W o  2: 0 and W' 2: 0. For example, in 
computing W ' ,  we find that both terms on the right-hand side of (8.7) are large, but 
cancel each other almost exactly, see figure 4. 

In the next example the geometry is a ship, length I and beam bo, with l/bo = 5.6. 
The ship section is a circular half-cylinder with radius r ( x )  = 0.5bo[l - ( 2 ~ / l ) ~ ] ,  
1x1 < 1/2. Numerical values of Bs6 are shown in figure 5 for p = 71/2 (beam seas), 
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FIGURE 4. Energy equation us. Ka for the vertical cylinder described in figure 1. fl  = n. Solid line 
the first term and dashed line the second term on the right-hand side of (8.7) divided by 1. Dotted 
line: W' /pgA2c, 1. 
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FIGURE 5. B66/po2biA2 us. K1 for the ship. Solid line: p = 7112; dashed line: fi  = 3n/4. Dotted 
line: fl  = n. The black squares denote the computation points. SB and SF are both discretized with 
800 panels. SF is discretized out to a circle with radius I and centre in the origin. Crosses mark 
computations with panelization: S, and SF 1568 panels. 

p = 3n/4 (quartering seas), p = 71 (head seas). B66 is always positive, is largest for 
beam seas, and smallest for head seas. More specifically, B66 is 4-5 times larger for 
beam seas than for head seas, when K l  > 6. 

In figures 6 and 7 are displayed results for B16 and B26 for the ship. B16 and B26 attain 
both positive and negative values. For long waves we find that B16(n/2) = -&6(n), 
BI@) = B16(n/2) sin p, and &(p) = &(n) cos(n - p). It is noted that B16 for beam 
seas and B26 for head seas both are large. These results correspond to non-vanishing 
moments with respect to the z-axis, due to a ship translating respectively along the 
x-axis in beam seas, and along the y-axis in head seas, see Grue & Palm (1993). 

We have assumed in the theory that w + Q .  This means that the values of the 
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FIGURE 6. As figure 5 but for BI6/pw2biA2. B I 6  = 0 for b = n. 
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FIGURE 7. As figure 5 but for B26/pw2biA2. Solid line: b = n. Dashed line: f l  = 37~14. 

B26 = 0 for b = n/2. 

damping coefficients shown in the figures for small K l  are not relevant to the slow 
drift problem, strictly speaking. It is still, however, of interest to investigate the results 
in the limit K l  --+ 0. 

9.1. Convergence 
We next investigate convergence of the method. The geometry is modelled by a 
set of quadrilaterals and the potentials and the source strengths are approximated 
by constants at each quadrilateral. The numerical integration is performed by the 
midpoint rule, except when integrating the singularities of the Green function. Thus, 
we expect that the relative error in the integrated forces and moments is of the order of 
a typical panel size divided by the wetted area of the body, i.e. proportional to ~ / N B ,  
l/NF, where N B  and NF denote the number of panels on SB and SF, respectively. In 
table l(a) are shown results for B66 and in table l(b) for B16 for various discretizations 
of the ship. The results in the table clearly indicate convergence as the number of 
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N B  NF K I = 4  K l = 8  K1=12 K1=16 
(a) 392 392 5.000 21.20 22.01 22.51 

800 800 4.919 20.47 21.27 21.41 
1568 1568 4.869 20.11 20.88 20.84 

(b)  392 392 -2.940 -0.509 0.517 1.232 
800 800 -3.009 -0.523 0.537 1.160 

1568 1568 -3.049 -0.526 0.566 1.171 

TABLE 1. Convergence of (a)  B66/pu2b;A2 (b)  B16/pu2b;A2 for the ship us. panelization. Free 
surface discretized within a circle with radius 1. N B  denotes number of panels on SB, NF denotes 
number of panels on SF. /l = z/2. 

NF K l = 4  K 1 = 8  K l = 1 2  
0 8.484 39.87 49.48 

440 4.976 20.56 21.34 
800 4.919 20.47 21.27 

1800 4.882 20.27 21.01 
3200 4.848 20.10 20.82 

0 -0.402 0.340 2.177 
440 -2.989 -0.393 0.508 
800 -3.009 -0.523 0.537 

1800 -3.086 -0.486 0.508 
3200 -3.181 -0.524 0.510 

K1= 16 
54.65 
21.42 
21.41 
21.16 
20.97 
3.758 
1.174 
1.160 
1.175 
1.210 

TABLE 2. Convergence of ( a )  B66/pm2b;A2 (b)  B16/pu2b;A2 for the ship us. discretization radius Kut 
of the free surface. 31/4 < &,( < 21. Number of panels on SB is in all cases N B  = 800. NF denotes 
number of panels on SF. j? = n/2. 

panels is increased. The results for B66 exhibit a linear convergence rate with respect 
to l / N B ,  l / N F .  The convergence rate for B16 is somewhat different than for B66. 
However, the difference between the finest and next finest discretization is minor. This 
is also seen from the plots in figures 5 and 6. 

In the computations for the ship a truncation radius equal to the ship length 
was used. In tables 2(a) and 2(b) we investigate how the values of B66 and B16 
depend on the truncation radius. We find that the computed values vary by at most 
2% for B66 and at most 6% for B16 when the truncation radius is in the interval 
1 < truncation radius < 21. The table also shows that integration over the free surface 
cannot be omitted. 

9.2. Comparison with viscous damping 
It is of interest to compare the wave drift damping moment of the ship with an 
estimate of the damping moment due to viscous drag. The latter may be obtained 
from the sectionwise drag on the ship which is given by dD = (1/2)pCDr(x)xlxlQlQldx 
(with the x-axis in the length-direction of the ship). The yaw moment due to viscous 
drag is then obtained as 

Consider a practical case concerning the slow yaw motions of a moored Turret 
Production Ship described in Faltinsen (1990, p. 280). The data in this case are: ship 
length 1 = 230 m, natural period of the yaw motion 400 s, standard deviation of the 
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FIGURE 8. Mzo/pgbiA2 us. K l  for the ship. f i  = 37c/4. Same discretization as in figure 5. 

slow yaw angle 3". This means that the standard deviation of 52 is 8.22 x 10-4s-'. The 
drag coefficient may be estimated as CD = 1 (see Faltinsen 1990, p. 194). From the 
results in figure 5 we have that &6/pw2b&42 > 4 for w21/g > 5. (The wave period is 
less than 14 s when w21/g > 5 and 1 = 230 m.) This means that 

(9.2) 
( 5 2 / u ) B 6 6  , 

Mvisc (&id2. 
Thus, for wave amplitude A > 1.7 m the wave drift damping moment is larger than 
the damping moment due to viscous drag in this example. 

9.3. Comparison with the moment at 52 = 0 
It is of interest to compare the magnitude of B66 to the zero-speed moment Mzo, 
where the latter is displayed in figure 8 for j3 = 3n/4. We observe that B66 is one 
order of magnitude larger that Mzo. For example, for p = 3n/4 and K l  = 10, we 
have &j6/Mz0 N 200. By applying SZ = 8.22 x 10-4s-' as in the example above, we 
find that ( 5 2 / ~ ) B 6 ~  is 25% of Mzo. This shows that the wave drift damping moment 
also significantly contributes to the total moment acting on the ship. 

10. Concluding remarks 
A method for evaluating the diffracted waves, the wave forces and the wave drift 

damping due to a floating body performing a slow rotation about the vertical axis, 
with a finite rotation angle, is developed. The incoming waves, with wave frequency 
w in the absolute frame of reference, and the slow angular velocity 52 of the body, 
where it is assumed that 52 4 w, introduce two timescales to the problem, proportional 
to l/o and l/sZ, respectively. It is noted that the components of the exciting force 
experienced by the body, being proportional to the wave amplitude, generally will 
oscillate with a frequency o + 0(52), which is slightly different from w and varying 
with respect to the wave angle. The corresponding result is true for the linear fluid 
flow at a fixed space location. 

The mathematical problem is formulated by means of potential theory. A set of 
boundary value problems is developed by applying perturbation expansions in the 
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incoming wave amplitude and the slow angular velocity of the body, which are solved 
by means of integral equations, containing unknown quantities on the wetted body 
surface only. It is noted that the boundary value problems and the corresponding 
integral equations due to a slowly translating body are obtained as part results of the 
present analysis. 

Formulae for the wave drift damping coefficients are obtained by applying conserva- 
tion of linear and angular momentum. The resulting expression for the damping coef- 
ficient B66 given by (6.8) has formally the same form as Newman (1993, equation 5.10), 
except that Po (the wave angle in the fixed frame of reference) is replaced by p = Po-a 
in our formula ( p  the wave angle in the relative frame of reference, CI the rotation 
angle of the body in the fixed frame of reference). In Newman’s analysis the rotation 
angle is assumed small, and hence his result is recovered from ours by setting CI = 0. 

There are, however, disagreements between our formulae for B16 and &6 and the 
corresponding formulae obtained by Newman (1993, equation 5.6). To compare them 
we must perform some transformations. We then find that to get agreement we must 
add to Newman’s equation (5.6) a term and change the sign of another term, as 
discussed in $7. 

Here we proceed one step further than Newman (1993), as the wave drift damping 
coefficients are expressed in terms of the far-field amplitudes of the wave potentials and 
the dipole moments of the time-averaged second-order potential, resulting in simple 
formulae that are suitable for efficient numerical algoritms. Numerical solution of the 
problem is obtained by using a low-order panel method. The method is applicable to 
geometries of general form. 

Examples for the damping coefficients B16, B26, B66, are considered for two different 
bodies, namely a symmetric ship and a vertical circular cylinder with axis describing 
a circular path in the horizontal plane. The method is carefully checked, for example 
by invoking the balance of energy, which in all examples is satisfied to a relative 
accuracy of better than 1%. Convergence of the method is documented. We find that 
the damping coefficients are one order of magnitude larger than the time-averaged 
horizontal force components Fxo, Fyo, and the vertical moment MZo, which means 
that a slow rotation of the body introduces a significant change of the forces. The 
damping coefficient B66 is in all the present examples found to be positive and large. 
This means that wave drift damping due to a slow yaw motion of the body is just as 
pronounced as for slow translatory motions. Thus, evaluation of the complete wave 
drift damping matrix (1.2) is required to study slow drift motions of moored floating 
bodies in the realistic manner. 

We have also compared the wave drift damping to viscous damping. In the realistic 
case of a ship we find that the wave drift damping predominates even for waves with 
relatively small amplitude. 

In the present contribution only the linear diffraction effects are taken into account, 
which means that the body is kept fixed in the relative frame of reference. The method 
may, however, be generalized to account for the linear responses of the floating body 
and the resulting radiation effects. The complete diffraction-radiation problem is 
under development, see Finne & Grue (1995). Relevant to most practical examples 
where wave drift damping is of importance, we have considered the water depth to 
be infinite. This has also simplified the analysis. 
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Appendix A. The integral in (4.13) 
The integral (4.13) is given by 

By applying Green's theorem to Go and 2iKd241/d/3dK, and to G' and 41, and 
integrating over the entire free surface and S(R), we obtain 

Applying d4, /ap = -a4,/dO, using (3.22) for $12, and (4.8) for G', and noting that 
the integral over the free surface in (A2) vanishes, we obtain by adding (A2) to the 
right-hand side of (A 1) 

a241 

apaK. 
(A 3) 

a247 dGo . a a24, 
I = h,, (ZiKmx - G 2X-- a n  aeaK - dS + 8nX- 

By then applying partial integration with respect to the @-variable, (A 3) reduces to 

It may be shown by using Green's theorem that the integral over S(R) in (A4) is 
independent of the value of R ( R  >body radius), and equals zero, which is obtained 
by letting R m and applying the radiation conditions for 4, and Go. Thus, 

Appendix B. A variant of Stokes' theorem 
A variant of Stokes' theorem reads 

where V denotes a differentiable vector field, f a differentiable scza3r variable, and S 
an open surface bounded by the contour C. The line integral around C is oriented 
positive with respect to the normal vector of the surface S .  In our applications, C is 
a contour in the mean free surface, and S is assumed to have vertical walls at the 
mean free surface. We note that 

( n x V ) x ( f V ) = f n x ( V x  V ) + f ( n . V ) V - n V - ( f V ) + ( n .  V)Vf. (B 2) 

Applying V = Vy we have V x V = 0. Noting that d l  x (f V )  = dZlf(ky,, - nyZ)]  
we then obtain 

Let f = 4, and y = 4*,  where 4* satisfies V24* = 0 in the fluid domain. Furthermore, 
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let C = C(R), and S = S(R) + S(z), where S ( z )  denotes a horizontal bottom with 
vertical coordinate z -+ -a. Assuming no fluid motion at z = -a, the contributions 
due to integrals over S ( z )  vanish. Exploiting the free-surface boundary condition (3.5) 
for 4, for a sufficiently large R, such that the effect of x6 is negligible, i.e. 

8 4  84 
aa ae (pz = K #  + 2ieK - - 2ieK -, 

we find that the horizontal components of (B 3) read 

Appendix C. The forces 
We shall evaluate the damping coefficients B16, B26 which are given by (7.11), i.e. 

Now, 4 7  and 413 have the following asymptotic forms for large KR: 

(e)eKz-xR (1 + o((KR)-')), (C 2) 
(C 3) 

where Ho and H13 are given by (4.19) and (4.21), respectively. The potential 4' is 
given by 

4 - -1/2Ho 

4 1 3  = R-1/2H'3 
7 - - R  

(e)eKz-xR (1 + O ( ( K R m  

since a4I/ap + d 4 l / d O  = 0. For large KR it is convenient to decompose 4l as 

4' = y1 + q' 

w1 = 2KR1/'(H; + Hi)eKZ-xR (1  + O((KR)-" 

(C 5 )  

(C 6 )  

(C 7) 

(C 8) 

where 

and 

Here, the amplitude H' is defined by 
[H' + 2iKz(H; + H~)]eK'-xR(l + O((KR)-')). q1 = R-1/2 

H' = 2iK(HjK + HiK) + H13. 

Introducing n(0) = i cos 8 + j sin 8, t (e )  = dn/de, we have the following relations for 
the derivatives of the potentials: 



Now, 1(4O,4') = I(40,cp1) + 1(40,v1). First f(4O,cp1) is evaluated. By introducing 
(C 9)-(C 17) into (C 21) we obtain 

+O((K R)-'). (C 22) 
0 0 By carring out the vertical integration, noting that I-, eZKZdz = 1/(2K), s-, ze2KZdz 

= -1/(4K2), we obtain 

x(1 + cos(6 - f l ))(n(f l)  + n(e))[H'* + i(Hj + H:)*]d6' (C 23) 

where we have neglected terms of O((KR)-'). By applying the method of stationary 
phase to the last integral, and letting KR + co, we obtain 

where I1 is expressed in terms of 4r, &, and y ' ,  i.e. 
2n 

11 = L R e l  i[47n(O) + ;+,(l+ cos(6 - f l ) ) (n(f l )  + n(8))lv"de. (C25) 4K 

Consider now 1(4°,w1). By introducing (C9)-(C 14) and (C 18)-(C 20) into (C21), we 
obtain 
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By then carrying out the vertical integration we find 

where partial integration is applied and we have neglected terms of O((KR)-*). 
Thus, 1 3  is given by 
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By then summing Z1, Z($O,yl), and 1 3 ,  we obtain 

It + W0, Y '  1 + 13 
2n 1/2 

= -Re (d iHo(Hjo + H&)*t(B)dB + i (g) ein/4(Hj;(fl) + Hi;( f i ) ) t ( f l )  

where the method of stationary phase is applied. The final 
then becomes 

expression for B16i + B26j 
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